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Differential binary trees store data embedded in the flow of the tree. This 
results in low data redundancy and fast execution of indexed operations, 
bridging the gap between arrays and binary trees.
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1. Classical binary trees
Consider the binary tree of figure 1 (below).

figure 1. A binary tree with absolute key values

This is a common data structure. Still, if we look carefully at the tree, the 
following seems odd:

    The key values are isolated, they are not part of the flow of the tree.

This suggests that representation of data keys in the tree:

• forgets to use the fact that the tree is ordered
• is through repetition partly redundant
• is unnatural and therefore inefficient for certain algorithms that operate on 
the tree.

With unnatural I mean that something is wrong (wringing), namely:
• to reach a data key, we proceed along a path in the tree, we gradually 
reach the point where the it is, but
• if we reach that point, the data key itself is suddenly there, its value did 
not also grow along the path.



We will look at the consequences more closely in the rest of this thesis.



2. Differential binary trees
So, let’s have a look at a tree where the keys themselves do grow along the 
path that we follow to find them. Such a tree is given in figure 2 (below). It 
represents the same data as the classical binary tree of figure 1 (above).

figure 2. A binary tree with differential key values embedded in the flow of the 
tree

The tree of figure 2 (above) stores keys as follows:

• the root node stores its own key value
• each successive node stores the difference between its key and its parent’s 
key.

So, for example node 4 stores 4 - 8 = -4 and node 5 stores 5 - 4 = 5 - (8 - 4) = 
+1. Therefore we will call the tree a differential tree.

The following is true for differential binary trees:

• the sum of all stored node key differences (diffs) along the path to a node, 
produces the node’s key
• the left child node of any node has a negative node diff

http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree02.png


• the right child node of any node has a positive node diff
• the absolute value of node diffs tends to decrease with the depth of the 
node.

The latter observation is interesting. Each subtree cuts the number of 
remaining nodes into half. In the special case that the tree is balanced and 
completely filled, each subtree level decreases the number of bits required 
for key diff representation with exactly one. See figure 3 and 4 (below). Note 
that there are twice as much nodes that require n bits than there are nodes 
that require n + 1 bits !

figure 3. An ideally filled and balanced binary tree with absolute key values

http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree03.png


figure 4. An ideally filled and balanced binary tree with differential key values

We could say that the data "compression" of the differential binary tree is at 
its best when the tree is ideally filled and balanced. However, from the 
perspective of the differential binary tree, there is no data compression at all, 
just data redundancy in the classical binary tree. And that data redundancy 
is at its peak when the tree is ideally filled and balanced.

The data efficiency of the differential binary tree depends, quite naturally, on 
the sparseness of its data keys. A possible field of application is in data 
encryption.

http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree04.png


3. Classical arrays
Before continuing with our analysis of the differential binary tree, we will 
have a closer look at the classical array, implemented as a consecutive 
block of data in memory (figure 5 and 6) or as a consecutive block of pointers 
to data in memory (figure 7).

figure 5. An unordered array, implemented as a consecutive block of data in 
memory

figure 6. An ordered array, implemented as a consecutive block of data in 
memory

figure 7. An ordered array, implemented as a consecutive block of pointers to 
data in memory

In an array, data is indexed. This means that (1) programming is easy (2) 
there is no need for a key inherent to the data (in other words, the index is 
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neutral to and separate from the array’s data) (3) the array is a natural choice 
if the problem is to store an indexed list of data.

 

unordered 
array of 
consecutive 
data

ordered 
array of 
consecutive 
data

ordered array of consecutive 
pointers to data

indexed access  1  1  1

find  N  2log(N)  2log(N)

indexed append
 1
(plus realloc 
delay)

 1
(plus realloc 
delay)

 1
(plus realloc delay)

indexed insert
 N
(plus realloc 
delay)

N
(plus realloc 
delay)

N
(plus realloc delay)

indexed delete  N  N  N
iteration over 
array  N  N  N

delete all  1  1  N

individual array 
elements can be 
referenced

no (physical 
pointers are 
not 
persistent)

 no (physical 
pointers are 
not 
persistent)

 yes (physical pointers are 
persistent)

can have 
variable-size 
elements

 no  no  yes

data overhead 
per element  none  none  pointer-size bytes

array can be 
sparse  no  no

 will still cost pointer-size 
bytes per element for each nil 
pointer

table 1. Properties and approximate order of needed time for operations in 
arrays,
where N is the number of elements in the array.

Table 1 (above) lists the relative performance of arrays for basic operations. 

We can improve the key-find time from order N to order 2log(N), using binary 
search in an ordered array. Still the general conclusion for classical arrays 
can only be that they are:

• fast and compact for static data
• slow for dynamic data, unless the number of elements N is quite small.



4. Binary trees compared
Table 2 (below) lists the properties and performance of operations in 
classical binary trees, compared to differential binary trees, assuming that 
both are implemented as a near-balanced trees, for example as AVL tree or 
as red-black tree.

 
classical binary tree, 
implemented as AVL or red-
black tree

differential binary tree, 
implemented as AVL or red-
black tree

access  2log(N)  2log(N)

indexed access  2log(N)  2log(N)

find  2log(N)  2log(N)

append  2log(N)  2log(N)

indexed append  2log(N)  2log(N)

insert  2log(N)  2log(N)

indexed insert  N  2log(N)

delete  2log(N)  2log(N)

indexed delete  N  2log(N)

key shift  N  2log(N)
iteration over tree  N  N
delete all  N  N
individual tree 
elements can be 
referenced

 yes (physical pointers are 
persistent)

 yes (physical pointers are 
persistent)

can have 
variable-size 
elements

 yes  yes

data overhead 
per element

 two times pointer-size 
bytes plus 1 or 2 balancing 
bits

 two times pointer-size 
bytes plus 1 or 2 balancing 
bits

tree can be 
sparse  yes  yes

table 2. Properties and approximate order of needed time for operations in 
binary trees,
where N is the number of elements in the array.

The indexed operations mimic the same operations in an array. This is 
important if we want to implement an array using a tree. I recall the bad 



performance of classical arrays, outlined in the chapter above.

So, for example, if we insert an element in an array at index 8, we first have 
to move all data at position 8 and above, one position up. Doing the same in 
a tree that implements an array (with index numbers as keys), we have to 
add one to all index keys from 8 upwards.

This very index key shift is a slow (order N) operation in a classical binary 

tree, but a fast (order 2log(N)) operation in a differential binary tree ! Right 
here we see the advantage of storing keys differentially, that is, integrated 
into the natural flow of the tree.



5. Bridging arrays and trees
From the above, it may be clear that the differential binary tree bridges the 
gap between arrays and binary trees, by making index key shift a cheap 
operation.

In fact, the classical array can be looked at as a differential data structure 
with an implicit index key difference of one, based on the fact that the data 
structure is non-sparse. I recall the resemblance with figure 4 (above).

Using differential binary trees, we can implement dynamic arrays so that

• all indexed operations are guaranteed of order 2log(N)
• iteration is of order N
• the array can be sparse.

I will note that iteration is a more efficient operation than indexed access in a 
loop.Therefore (and also for fundamental reasons) iteration over a data 
structure should be a language construct in higher-level languages.

Table 3 summarizes the properties of array implementations we have 
discussed.



 

unordered 
array of 
consecutiv
e data

ordered 
array of 
consecutiv
e data

ordered 
array of 
consecutiv
e pointers 
to data

array 
implement
ed               
     with 
classical 
AVL or 
red-black 
tree

array
implement
ed               
       with 
differential 
AVL or 
red-black 
tree

 indexed 
access  1  1  1  2log(N)  2log(N)

 find  N  2log(N)  2log(N)  2log(N)  2log(N)

 indexed 
append

 1
(plus 
realloc 
delay)

 1
(plus 
realloc 
delay)

 1
(plus 
realloc 
delay)

 2log(N)  2log(N)

 indexed 
insert

 N
(plus 
realloc 
delay)

 N
(plus 
realloc 
delay)

 N
(plus 
realloc 
delay)

 N  2log(N)

 indexed 
delete  N  N  N  N  2log(N)

 iteration 
over array  N  N  N  N  N

 delete all  1  1  N  N  N
 individual 
array 
elements 
can be 
referenced

no 
(physical 
pointers 
are not 
persistent) 

no 
(physical 
pointers 
are not 
persistent) 

yes  yes  yes

 can have 
variable-
size 
elements

no  no  yes  yes  yes

 data 
overhead 
per 
element

 none  none  pointer-
size bytes

two times 
pointer-
size bytes 
plus 1 or 2 
balancing 
bits 

two times 
pointer-
size bytes 
plus 1 or 2 
balancing 
bits 



 array can 
be sparse  no  no

 will still 
cost 
pointer-
size bytes 
per 
element 
for each nil 
pointer

 yes  yes

table 3. Properties and approximate order of needed time for operations in 
array implementations,
where N is the number of elements in the array



6. Algorithms
A full implementation of differential AVL-trees is given in the diff tree 
sample at the author’s website. It gives full source code in Pascal, licensed 
under the GNU Public License version 2. It compiles with the GNU Pascal 
compiler at the Microbizz website.

A detailed discussion of all aspects of the sample’s source code extends the 
scope of this publication. Let me just issue a few remarks.

• while searching for a key, we change the key to look for in a subtree, e.g. if 
we look for key 5 in the tree of figure 1 and 2 (above), we subsequently look 
for keys -3 and +1 in a subtree; we stop when we have found a difference of 
0 or a leaf node.

• operations like insertion, deletion and AVL-rotation require diff-key 
adaption of nodes involved

• the several different iteration algorithms in the sample (forward, backward, 
from, until) are worth studying.

http://www.microbizz.nl/diff-tree-sample.tar.gz
http://www.microbizz.nl/diff-tree-sample.tar.gz
http://www.microbizz.nl/
http://en.wikipedia.org/wiki/Gpl
http://www.microbizz.nl/gpc.html
http://www.microbizz.nl/gpc.html


7. Multi-dimensional differential trees
The author plans to extend this document with an example (figure) of a two-
dimensional differential binary tree, efficiently implementing a spreadsheet.



8. Recommendations
The author encourages compiler writers and higher-level language 
designers to
• implement dynamic arrays internally as balanced differential binary trees 
(e.g. as differential AVL-tree or as differential red-black tree)
• add iteration over a data structure (or a subset of a data structure) as a 
language construct, because iteration over an advanced data structure is 
more efficient than a loop with indexed or key-based access.

The author welcomes further investigation into
• the theoretical framework of differential binary trees, as well as
• the properties of differential binary trees in relation to data encryption and 
data compression.


