
Differential binary
trees
A fast and compact data structure

By Adriaan van Os <adriaan@microbizz.nl>

Differential binary trees store data embedded in the flow of the tree. This
results in low data redundancy and fast execution of indexed operations,
bridging the gap between arrays and binary trees.

Contents

1. Classical binary trees
2. Differential binary trees
3. Classical arrays
4. Binary trees compared
5. Bridging arrays and trees
6. Algorithms
7. Multi-dimensional differential trees
8. Recommendations

http://www.microbizz.nl

1. Classical binary trees
Consider the binary tree of figure 1 (below).

figure 1. A binary tree with absolute key values

This is a common data structure. Still, if we look carefully at the tree, the
following seems odd:

 The key values are isolated, they are not part of the flow of the tree.

This suggests that representation of data keys in the tree:

• forgets to use the fact that the tree is ordered
• is through repetition partly redundant
• is unnatural and therefore inefficient for certain algorithms that operate on
the tree.

With unnatural I mean that something is wrong (wringing), namely:
• to reach a data key, we proceed along a path in the tree, we gradually
reach the point where the it is, but
• if we reach that point, the data key itself is suddenly there, its value did
not also grow along the path.

We will look at the consequences more closely in the rest of this thesis.

2. Differential binary trees
So, let’s have a look at a tree where the keys themselves do grow along the
path that we follow to find them. Such a tree is given in figure 2 (below). It
represents the same data as the classical binary tree of figure 1 (above).

figure 2. A binary tree with differential key values embedded in the flow of the
tree

The tree of figure 2 (above) stores keys as follows:

• the root node stores its own key value
• each successive node stores the difference between its key and its parent’s
key.

So, for example node 4 stores 4 - 8 = -4 and node 5 stores 5 - 4 = 5 - (8 - 4) =
+1. Therefore we will call the tree a differential tree.

The following is true for differential binary trees:

• the sum of all stored node key differences (diffs) along the path to a node,
produces the node’s key
• the left child node of any node has a negative node diff

http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree02.png

• the right child node of any node has a positive node diff
• the absolute value of node diffs tends to decrease with the depth of the
node.

The latter observation is interesting. Each subtree cuts the number of
remaining nodes into half. In the special case that the tree is balanced and
completely filled, each subtree level decreases the number of bits required
for key diff representation with exactly one. See figure 3 and 4 (below). Note
that there are twice as much nodes that require n bits than there are nodes
that require n + 1 bits !

figure 3. An ideally filled and balanced binary tree with absolute key values

http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree03.png

figure 4. An ideally filled and balanced binary tree with differential key values

We could say that the data "compression" of the differential binary tree is at
its best when the tree is ideally filled and balanced. However, from the
perspective of the differential binary tree, there is no data compression at all,
just data redundancy in the classical binary tree. And that data redundancy
is at its peak when the tree is ideally filled and balanced.

The data efficiency of the differential binary tree depends, quite naturally, on
the sparseness of its data keys. A possible field of application is in data
encryption.

http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree04.png

3. Classical arrays
Before continuing with our analysis of the differential binary tree, we will
have a closer look at the classical array, implemented as a consecutive
block of data in memory (figure 5 and 6) or as a consecutive block of pointers
to data in memory (figure 7).

figure 5. An unordered array, implemented as a consecutive block of data in
memory

figure 6. An ordered array, implemented as a consecutive block of data in
memory

figure 7. An ordered array, implemented as a consecutive block of pointers to
data in memory

In an array, data is indexed. This means that (1) programming is easy (2)
there is no need for a key inherent to the data (in other words, the index is

http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree05.png
http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree06.png
http://knol.google.com/k/-/-/pz98o7ulrif9/zvd1ua/difftree07.png

neutral to and separate from the array’s data) (3) the array is a natural choice
if the problem is to store an indexed list of data.

unordered
array of
consecutive
data

ordered
array of
consecutive
data

ordered array of consecutive
pointers to data

indexed access 1 1 1

find N 2log(N) 2log(N)

indexed append
 1
(plus realloc
delay)

 1
(plus realloc
delay)

 1
(plus realloc delay)

indexed insert
 N
(plus realloc
delay)

N
(plus realloc
delay)

N
(plus realloc delay)

indexed delete N N N
iteration over
array N N N

delete all 1 1 N

individual array
elements can be
referenced

no (physical
pointers are
not
persistent)

 no (physical
pointers are
not
persistent)

 yes (physical pointers are
persistent)

can have
variable-size
elements

 no no yes

data overhead
per element none none pointer-size bytes

array can be
sparse no no

 will still cost pointer-size
bytes per element for each nil
pointer

table 1. Properties and approximate order of needed time for operations in
arrays,
where N is the number of elements in the array.

Table 1 (above) lists the relative performance of arrays for basic operations.

We can improve the key-find time from order N to order 2log(N), using binary
search in an ordered array. Still the general conclusion for classical arrays
can only be that they are:

• fast and compact for static data
• slow for dynamic data, unless the number of elements N is quite small.

4. Binary trees compared
Table 2 (below) lists the properties and performance of operations in
classical binary trees, compared to differential binary trees, assuming that
both are implemented as a near-balanced trees, for example as AVL tree or
as red-black tree.

classical binary tree,
implemented as AVL or red-
black tree

differential binary tree,
implemented as AVL or red-
black tree

access 2log(N) 2log(N)

indexed access 2log(N) 2log(N)

find 2log(N) 2log(N)

append 2log(N) 2log(N)

indexed append 2log(N) 2log(N)

insert 2log(N) 2log(N)

indexed insert N 2log(N)

delete 2log(N) 2log(N)

indexed delete N 2log(N)

key shift N 2log(N)
iteration over tree N N
delete all N N
individual tree
elements can be
referenced

 yes (physical pointers are
persistent)

 yes (physical pointers are
persistent)

can have
variable-size
elements

 yes yes

data overhead
per element

 two times pointer-size
bytes plus 1 or 2 balancing
bits

 two times pointer-size
bytes plus 1 or 2 balancing
bits

tree can be
sparse yes yes

table 2. Properties and approximate order of needed time for operations in
binary trees,
where N is the number of elements in the array.

The indexed operations mimic the same operations in an array. This is
important if we want to implement an array using a tree. I recall the bad

performance of classical arrays, outlined in the chapter above.

So, for example, if we insert an element in an array at index 8, we first have
to move all data at position 8 and above, one position up. Doing the same in
a tree that implements an array (with index numbers as keys), we have to
add one to all index keys from 8 upwards.

This very index key shift is a slow (order N) operation in a classical binary

tree, but a fast (order 2log(N)) operation in a differential binary tree ! Right
here we see the advantage of storing keys differentially, that is, integrated
into the natural flow of the tree.

5. Bridging arrays and trees
From the above, it may be clear that the differential binary tree bridges the
gap between arrays and binary trees, by making index key shift a cheap
operation.

In fact, the classical array can be looked at as a differential data structure
with an implicit index key difference of one, based on the fact that the data
structure is non-sparse. I recall the resemblance with figure 4 (above).

Using differential binary trees, we can implement dynamic arrays so that

• all indexed operations are guaranteed of order 2log(N)
• iteration is of order N
• the array can be sparse.

I will note that iteration is a more efficient operation than indexed access in a
loop.Therefore (and also for fundamental reasons) iteration over a data
structure should be a language construct in higher-level languages.

Table 3 summarizes the properties of array implementations we have
discussed.

unordered
array of
consecutiv
e data

ordered
array of
consecutiv
e data

ordered
array of
consecutiv
e pointers
to data

array
implement
ed
 with
classical
AVL or
red-black
tree

array
implement
ed
 with
differential
AVL or
red-black
tree

 indexed
access 1 1 1 2log(N) 2log(N)

 find N 2log(N) 2log(N) 2log(N) 2log(N)

 indexed
append

 1
(plus
realloc
delay)

 1
(plus
realloc
delay)

 1
(plus
realloc
delay)

 2log(N) 2log(N)

 indexed
insert

 N
(plus
realloc
delay)

 N
(plus
realloc
delay)

 N
(plus
realloc
delay)

 N 2log(N)

 indexed
delete N N N N 2log(N)

 iteration
over array N N N N N

 delete all 1 1 N N N
 individual
array
elements
can be
referenced

no
(physical
pointers
are not
persistent)

no
(physical
pointers
are not
persistent)

yes yes yes

 can have
variable-
size
elements

no no yes yes yes

 data
overhead
per
element

 none none pointer-
size bytes

two times
pointer-
size bytes
plus 1 or 2
balancing
bits

two times
pointer-
size bytes
plus 1 or 2
balancing
bits

 array can
be sparse no no

 will still
cost
pointer-
size bytes
per
element
for each nil
pointer

 yes yes

table 3. Properties and approximate order of needed time for operations in
array implementations,
where N is the number of elements in the array

6. Algorithms
A full implementation of differential AVL-trees is given in the diff tree
sample at the author’s website. It gives full source code in Pascal, licensed
under the GNU Public License version 2. It compiles with the GNU Pascal
compiler at the Microbizz website.

A detailed discussion of all aspects of the sample’s source code extends the
scope of this publication. Let me just issue a few remarks.

• while searching for a key, we change the key to look for in a subtree, e.g. if
we look for key 5 in the tree of figure 1 and 2 (above), we subsequently look
for keys -3 and +1 in a subtree; we stop when we have found a difference of
0 or a leaf node.

• operations like insertion, deletion and AVL-rotation require diff-key
adaption of nodes involved

• the several different iteration algorithms in the sample (forward, backward,
from, until) are worth studying.

http://www.microbizz.nl/diff-tree-sample.tar.gz
http://www.microbizz.nl/diff-tree-sample.tar.gz
http://www.microbizz.nl/
http://en.wikipedia.org/wiki/Gpl
http://www.microbizz.nl/gpc.html
http://www.microbizz.nl/gpc.html

7. Multi-dimensional differential trees
The author plans to extend this document with an example (figure) of a two-
dimensional differential binary tree, efficiently implementing a spreadsheet.

8. Recommendations
The author encourages compiler writers and higher-level language
designers to
• implement dynamic arrays internally as balanced differential binary trees
(e.g. as differential AVL-tree or as differential red-black tree)
• add iteration over a data structure (or a subset of a data structure) as a
language construct, because iteration over an advanced data structure is
more efficient than a loop with indexed or key-based access.

The author welcomes further investigation into
• the theoretical framework of differential binary trees, as well as
• the properties of differential binary trees in relation to data encryption and
data compression.

